II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2023

STRENGTH OF MATERIALS (MECHANICAL ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

Max. Marks: 70

			BL	СО	Max. Marks
	UNIT-I				1
1	a)	A 500 mm long and 16 mm diameter rod	L2	CO1	7 M
		made of a homogenous and isotropic			
		material is observed to increase in length by			
		300 μ m, and to decrease in diameter by 2.4			
		μm when subjected to an axial load 12 kN.			
		Find Young's modulus (E), Poisson's ratio			
		(μ), Bulk modulus (K) and Modulus of			
		rigidity (G) of the material.			
	b)	Define Hooke's law and Poison's ratio.	L2	CO1	7 M
		Derive the expression for volumetric strain			
		of rectangular bar subjected to axial loading.			
OR					
2	Cal	culate the length and diameter of a solid steel	L3	CO2	14 M
	sha	aft which will transmit 90 kW at 160 rpm. The			
	ang	le of twist must not exceed 1° over the entire			

PVP 20

	length and maximum shear stress is limited to 60				
	N/mm^2 . Modulus of rigidity = 8 x 10 ⁴ N/mm ² .				
	UNIT-II		11		
3	A simply supported beam AB of span 10 m carries an UDL of 5 kN/m over 3 m from left end and also over 4 m from right hand support. It also carries a point load of 25 kN and 65 kN at 3 m and 8 m respectively from left support. Draw SFD and BMD and also find the maximum bending moment.		CO2	14 M	
	OR				
4	Sketch the shear force and bending moment diagrams for the cantilever beam shown in the figure and mark the salient values. 10 kN $5 kN/m$ $2 kN$	L3	CO2	14 M	
UNIT-III					
5	a) Derive the equation for pure bending. $\left(\frac{M}{I} = \frac{f}{y} = \frac{E}{R}\right)$	L2	CO3	7 M	
	 b) Calculate the maximum stress induced in a cast iron pipe of external diameter of 40 mm, internal diameter of 20 mm and of length 4 m when the pipe is supported at its 		CO3	7 M	

		ends and carries a point load of 80 N at its			
		centre.			
		OR			
6	a)	A wooden beam 100 mm wide and 150 mm	L4	CO3	8 M
		deep is simply supported over a span of 4 m.			
		If shear force at a section of the beam is			
		4500 N, find the shear stress at a distance of			
		25 mm above the neutral axis.			
	b)	Show that for a rectangular section, the	L2	CO3	6 M
		maximum shear stress is 1.5 times the			
		average stress.			
	T	UNIT-IV		1	
7	A beam of length 10 m is simply supported at its		L4	CO3	14 M
	ends and carries two point loads of 100 kN and				
	60 kN at a distance of 2 m and 5 m respectively				
	from the left support. Calculate the deflections				
	under each load. Find also the maximum				
		lection. Take I = $1.8 \times 10^8 \text{ mm}^4$ and			
	E=	$2.1 \times 10^5 \text{ N/mm}^2$.			
	I	OR		1 1	
8	Ac	cylindrical vessel whose ends are closed by	L4	CO3	14 M
	me	ans of rigid flange plates made of 3 mm			
	thic	ck. The length and the internal diameter of the			
	vessel are 50 cm and 25 cm respectively.				
	Det	termine the longitudinal and hoop stresses in			
		cylindrical shell due to an internal pressure			
	of	3 N/mm^2 . Also calculate the increase in			
	len	gth, diameter and volume of the vessel.			

UNIT-V							
a)	Derive an expression or the major and	L2	CO4	7 M			
	minor principle stresses on an oblique plane,						
	when the body subjected to direct stresses in						
	two mutually perpendicular directions						
	accompanied by a shear stress.						
b)	A rectangular bar of cross sectional area	L4	CO4	7 M			
	12000 mm ² is subjected to an axial load of						
	360 N. Determine the normal and shear						
	stresses on a section which is inclined at an						
	angle of 30° with the normal section of bar.						
OR							
10 Find an expression for crippling load for a long L2 C							
column when one end of the column is fixed and							
the other end is hinged.							
	b) Find	 a) Derive an expression or the major and minor principle stresses on an oblique plane, when the body subjected to direct stresses in two mutually perpendicular directions accompanied by a shear stress. b) A rectangular bar of cross sectional area 12000 mm² is subjected to an axial load of 360 N. Determine the normal and shear stresses on a section which is inclined at an angle of 30° with the normal section of bar. OR Find an expression for crippling load for a long column when one end of the column is fixed and 	 a) Derive an expression or the major and minor principle stresses on an oblique plane, when the body subjected to direct stresses in two mutually perpendicular directions accompanied by a shear stress. b) A rectangular bar of cross sectional area 12000 mm² is subjected to an axial load of 360 N. Determine the normal and shear stresses on a section which is inclined at an angle of 30° with the normal section of bar. Determine the normal section of bar. 	 a) Derive an expression or the major and L2 CO4 minor principle stresses on an oblique plane, when the body subjected to direct stresses in two mutually perpendicular directions accompanied by a shear stress. b) A rectangular bar of cross sectional area L4 CO4 12000 mm² is subjected to an axial load of 360 N. Determine the normal and shear stresses on a section which is inclined at an angle of 30° with the normal section of bar. Find an expression for crippling load for a long L2 CO4 CO4 			