II B.Tech - II Semester - Regular / Supplementary Examinations MAY - 2023

STRENGTH OF MATERIALS
 (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	A 500 mm long and 16 mm diameter rod made of a homogenous and isotropic material is observed to increase in length by $300 \mu \mathrm{~m}$, and to decrease in diameter by 2.4 μm when subjected to an axial load 12 kN . Find Young's modulus (E), Poisson's ratio (μ), Bulk modulus (K) and Modulus of rigidity (G) of the material.	L2	CO1	7 M
	b)	Define Hooke's law and Poison's ratio. Derive the expression for volumetric strain of rectangular bar subjected to axial loading.	L2	CO1	7 M
OR					
2		culate the length and diameter of a solid steel ft which will transmit 90 kW at 160 rpm . The le of twist must not exceed 1° over the entire	L3	CO 2	14 M

	length and maximum shear stress is limited to 60 $\mathrm{N} / \mathrm{mm}^{2}$. Modulus of rigidity $=8 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.				
UNIT-II					
3		simply supported beam $A B$ of span 10 m ies an UDL of $5 \mathrm{kN} / \mathrm{m}$ over 3 m from left and also over 4 m from right hand support. so carries a point load of 25 kN and 65 kN at and 8 m respectively from left support. w SFD and BMD and also find the ximum bending moment.	L3	CO 2	14 M
OR					
4		tch the shear force and bending moment grams for the cantilever beam shown in the re and mark the salient values.	L3	CO 2	14 M
UNIT-III					
5	a)	Derive the equation for pure bending. $\left(\frac{M}{I}=\frac{f}{y}=\frac{E}{R}\right)$	L2	CO3	7 M
	b)	Calculate the maximum stress induced in a cast iron pipe of external diameter of 40 mm , internal diameter of 20 mm and of length 4 m when the pipe is supported at its	L3	CO 3	7 M

		ends and carries a point load of 80 N at its centre.			
OR					
6	a)	A wooden beam 100 mm wide and 150 mm deep is simply supported over a span of 4 m. If shear force at a section of the beam is 4500 N, find the shear stress at a distance of 25 mm above the neutral axis.	L4	CO3	8 M
b)	Show that for a rectangular section, the maximum shear stress is 1.5 times the average stress.	L2	CO3	6 M	

UNIT-V						
9	a)	Derive an expression or the major and minor principle stresses on an oblique plane, when the body subjected to direct stresses in two mutually perpendicular directions accompanied by a shear stress.	L2	CO4	7 M	
b)	A rectangular bar of cross sectional area $12000 \mathrm{~mm}^{2}$ is subjected to an axial load of 360 N. Determine the normal and shear stresses on a section which is inclined at an angle of 30 with the normal section of bar.	L4	CO4	7 M		
OR						

